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Elements of a Stabilizing and Invariant Controller

Finite-time optimal control
N—1
Viy(x0) = min Y 1(xi, ui) + Ve(xw) (1)
i=0
s.t. Xip1 = f(X,', U,‘)
(X,', U,') eX U
XN € XF

Truncate after a finite horizon:

e Vr : Approximates the ‘tail' of the cost
e Xr . Approximates the ‘tail’ of the constraints

Optimal control law: kp(x) == ug

where v* = {ug, ..., Up_1} is the optimizer of (1)

What conditions do we need to place on V¢, Xr and / to ensure recursive
feasibility and stability?
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Stability of MPC - Main Result

If we can choose/find an Xr, kf, V¢ and / such that:
1. The stage cost is a positive definite function, i.e. it is strictly positive and
only zero at the origin

2. The terminal set is invariant under the local control law k¢ (x):
xT = Ax + Bkr(x) € Xr forall x € Xf
All state and input constraints are satisfied in XF:
Xr CX, ke(x) € Ufor all x € X¢
3. Terminal cost is a continuous Lyapunov function in the terminal set Xr:

Ve(xT) — Ve(x) < —I(x, ke(x)) for all x € Xf

Thm: The closed-loop system under the MPC control law u§(x) is stable and
the system x* = Ax + Bug(x) is invariant in the feasible set Xy.
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Stability of MPC - Outline of the Proof

o Assume feasibility of x and let [ug, uj, ..., uy_4]
be the optimal control sequence computed at x
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Stability of MPC - Outline of the Proof

o Assume feasibility of x and let [u5, uf, ..., uyn_;]
be the optimal control sequence computed at x

o At xT, [uy, uz, ..., Ke(xy)] is feasible:
Xy is in Xr — kr(xpy) is feasible

and xy11 = Axy + Bre(xy) in Xr

= Terminal constraint provides recursive feasibility

Practical Model Predictive Control 6-5 Model Predictive Control ME-425



Stability of MPC - Outline of the Proof

-1
J(x0) = p_ 10 ui) + Vi(xu)

li

=

I
o

H H . * * *
Feasible, sub-optimal sequence for x; : [uf, U5, ..., Kr(XR)]

J0a) £ DI0¢ 1) + Vi)
= 00 01) 4 Vi) — 105 66) + Vi) — Vo0si) + (i, (33)
= J(0) — 106, 68) + Ve(ugn) — Ve(i) + 10xi i (5i)

V¢(x) is a Lyapunov function: <0

J*(x) is a Lyapunov function — (Lyapunov) Stability
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Choice of Terminal Sets and Functions

How do we choose V¢, X¥, k¢ to satisfy stability conditions?

Can be difficult in general, but one case is constructive:
f(x,u)=Ax+Bu  Xand U polytopes  I(x,u) = x" Qx+ u"Ru

Define the terminal controller as the optimal unconstrained LQR control law,
and the terminal weight as the optimal LQR cost:

Kkr(x) = Kx K=—(R+B"PB)*BTPA
where P is the solution to the discrete-time algebraic Riccati equation:
P=Q+ATPA—ATPB(R+BTPB)"'BTPA
Choose the terminal weight to be the optimal LQR cost:
Ve(x) == xTPx = ZX,‘TQX,' + x TKTRKx;
i=0

Choose the terminal set Xr to be the maximum invariant set for the
closed-loop system x* = (A + BK)x subject to X C X, KXr C U
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Choice of Terminal Sets and Functions

1. The stage cost is a positive definite function

I(x,u) = xTQx+u"Ru>0forall x,u#0

2. The terminal set is invariant under the local control law v = Kx.
Xr has been defined as the largest invariant set for the terminal control law.

3. Terminal cost is a continuous Lyapunov function in the terminal set Xr.
Ve(x1) — Vi(xo) = x1 " Px1 — xo | Pxo

—Zx, (Q+ KT RK)x ZX,T(Q+K RK)x;

i=1 i=0
=—x' (Q+ K"RK)xo
= —/(Xo, KXO)

Practical Model Predictive Control 6-8 Model Predictive Control ME-425



Example: Unstable Linear System

o2 1, 1],
“lo 1 0.5

System dynamics:

Constraints:

X:={x|-50<x3 <50, =10 < <10} ={x|Ax < by}
U:= {u|||u||oo§1}:{u‘AuUSbu}

Stage cost:

I(x,u) :=x" B ﬂ x+u'u

Horizon: N =10

Practical Model Predictive Control 6-9 Model Predictive Control ME-425



Example: Designing MPC Problem

1. Compute the optimal LQR controller and cost matrices: K, P
2. Compute the maximal invariant set Xr for the closed-loop linear system
xt = (A+ BK)x subject to the constraints

Xa = {X [A/jXK] x= m }

10
sl
° \

5|

% 0 50
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Example: Closed-loop behaviour

6
5

4

Practical Model Predictive Control

Model Predictive Control ME-425



Example: Closed-loop behaviour
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Example: Closed-loop behaviour
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Example: Lyapunov Decrease of Optimal Cost
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Example: Impact of Horizon

101

Maximum
Control-Invariant
Set

1% 0 50

The horizon can have a strong impact on the region of attraction.
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Outline

1. MPC: Practical Issues
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MPC: Practical Issues
Feasible Set

e Constraints restrict the set of states for which the optimization problem is
feasible.

e MPC controller is only defined in the feasible set, where a solution exists

2 Example: Double Integrator

: ~. ~~ | + .

0.5 Y

~ o- {N/ *OSSUSOS
“05 —-5<x,<5,1=1,2

% 0 5

X

— Want the feasible set to be as large as possible
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MPC: Practical Issues

Tracking

e Classic MPC problem: Regulation to the origin

e Common task in practice: Tracking of non-zero output set points

r Example: Double Integrator
11 1
1 S ~ +_
— X {o 1} X+ [0.5} v
0.5r ¢
o X —05<5u<05
“05 —-5<x<5,i=1,2
-1+ T
15 i ,
ES 5 s
X

1

— Want to use MPC for tracking
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MPC: Practical Issues

Disturbance rejection

e Constant disturbance causes offset from the origin / the desired set point

-1.5¢

Example: Double Integrator

xt = B ﬂx—i—[oil\r)}u—i-d
. . d=02

—05<5u<05

—5<x<5,1=1,2

- _25

5

xXol|

— Want to remove offset such that system converges to desired set point.
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Outline

2. Enlarging the Feasible Set

e MPC without Terminal Set
¢ Soft Constrained MPC
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Review: Stability of MPC

Assume that

1. The stage cost is a positive definite function, i.e. it is strictly positive and
only zero at the origin

2. The terminal set is invariant under the local control law k¢(x):
xT = Ax + Bkr(x) € Xr for all x € Xf
All state and input constraints are satisfied in Xr:
Xr CX, ke(x) € U for all x € Xf
3. Terminal cost is a continuous Lyapunov function in the terminal set Xr:

Ve(xT) — Vr(x) < —I(x, ke(x)) for all x € Xf

Thm: The closed-loop system under the MPC control law u§(x) is stable and
the system x* = Ax + Bug(x) is invariant in the feasible set Xp.
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MPC without Terminal Set

Motivation

e Terminal constraint reduces feasible set

— Blue line: Feasible set with
terminal constraint

g O o W — Red line: Feasible set
I e without terminal constraint
2 i ) o — Dashed line: Terminal set
E3 0 — 5

1

e Potentially adds large number of extra constraints

e Adds state constraints to problems with only input constraints

Goal: MPC without terminal constraint with guaranteed stability

Note: Feasible set without terminal constraint is not invariant.
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MPC without Terminal Set

We can remove terminal constraint while maintaining stability if

e initial state lies in sufficiently small subset of feasible set

o N is sufficiently large

such that terminal state satisfies terminal constraint without enforcing it in

the optimization.

= Solution of the finite horizon MPC problem corresponds to the infinite

horizon solution

ol NN

3

IR

/

=

,§5 0
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MPC without Terminal Set: Discussion

Advantage: Controller defined in a larger feasible set

Disadvantage: Characterization of region of attraction or specification of
required horizon length extremely difficult

Remarks:

e Terminal constraint provides a sufficient condition for stability:
Region of attraction without terminal constraint may be larger than for
MPC with terminal constraint

e In practice: Enlarge horizon and check stability by sampling

o With larger horizon length N, region of attraction approaches maximum
control invariant set
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Soft constrained MPC: Concept

Motivation:
e State constraints may lead to infeasibility
(also without terminal constraint) ,
« Controller must provide some input in every . ' Sy
circumstance N LN
5 5 :

e Input constraints often represent actuator limitations
— generally have to be considered and satisfied

e State constraints often represent performance or comfort constraints
— could be temporarily violated if necessary

Soft constraints are common practice in industry
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Objectives

Goals:

e Minimize the duration of the violation
o Minimize the size of the violation

These can be conflicting goals, i.e. reduction in size of violation can only be
achieved at cost of large increase in duration of violation

— Multi-objective problem

Red:  Minimum time of
violation

Blue:  Minimum size of
violation

"0 5 10 15 20 25 30
time step
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Multi-objective Problem

For given system and horizon can plot pareto optimal size/duration curve for
different initial conditions:

R Best operation points lie on pareto optimal
ooy curve:

e points below cannot be attained

size

e points above are inferior

— Operation at pareto optimality is in
general difficult and only approximately
achieved

duration

Best operation point minimum time or minimum violation?

Depends on application, e.g.:

e if product must be discarded during constraint violation, goal is minimum
time of violation

e if large constraint violations can lead to process shutdown or exceptions
goal is minimum amount of violation
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Soft constrained MPC problem setup

N-1
min > x"Qxi+ ul Rui + pler) + xn Pxn + plen)
i=0
X
s.t. xjx1 = Ax; + Bu; €1 !
HXX/' S kx + €, -
h,x <k
HuUi S ku, 0= &
€ Z 0
X3
€3 = 0
e Relax state constraints by introducing so called 120
slack variables ¢; € R” 100
e Penalize amount of constraint violation in the cost *
by means of penalty p(€;) “L )
40 \\\ /
How to choose penalty? o\ /,/
o Quadratic penalty: p(e;) = €/ Se; - -

e Quadratic and linear norm penalty: 8] - 1067
e:
p(e/) = €] Sei + s|l€ill1/oo0 Reud- ;T;:—rm”ee"e
: 1
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Example

Consider the third-order non-minimum phase system

2 —145 0.35 1
xT =1 0 0 | x+|0|u

0 1 1 0
y=[-1 0 2

Initial condition

onstrain Sys x(0) = [0.8 0.8 O.S]TZ

e Controller parameters:

Q=CTC,R=1and N =20. e
05
% 10 20 30 40 50
05
I
-0s

20 30 40 50
time step
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Soft constraints with quadratic penalty

Properties of the quadratic penalty:

o Well-posed quadratic program (positive definite Hessian)

e Increase in S leads to ‘hardening’ of the soft constraints

Example:

Initial condition: .
x(0)=1[1.5 15 15

25 30 Blue: S=1

‘ ‘ ‘ ‘ ‘ Red: 5$=10
g"z‘: Green: S =050
5 '07 e Violet: S =100
-0.2f]
04 5 10 15 20 25 30

time step
— Increase in S leads to reduced size of violation but longer duration
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Soft constraints with quadratic and linear penalty

Properties of the linear penalty:

o Allows for exact penalties: If weight s is chosen large enough, constraints
are satisfied if possible

Example:
1,«.’1’:,\»~T ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
A\ N Initial condition:
=05 A x(0)=[.95 .95 .95]
o I 1 Penalty: 1-norm, S= 20
0 10 20 30 40 50
Blue: s=0.1
0.2 _ ] Red: s=10
SR 51— ] Green: s5=25
-0.2
0 10 20 30 40 50
time step
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Soft constraints with quadratic and linear penalty

Properties of the linear penalty:

o Allows for exact penalties: If weight s is chosen large enough, constraints
are satisfied if possible

e Increasing s results in increasing peak violations and decreasing duration

e Large linear penalties make tuning difficult and cause numerical problems

Example:
2/
Initial condition:
~1f x(0)=[15 15 15]"
ol Penalty: 1-norm, S= 20
0 10 20 30 40 50
Blue: s=0.1
Red: s=10
Green: s=25
04 10 20 30 40 50

time step
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Simplification: Separation of objectives

1. Minimize violation over the horizon:

€™ = argmin, ¢/ Se; + 57 €;

s.t. xiy1 = Ax; + Bu;

Hexp < K + €,
Huui S KuV
€ Z 0
2. Optimize for controller performance:
N-1
muin Z X" Qx; 4 u] Ruj + x5 Pxn
i=0

s.t. Xji+1 = AX,’ + BU,'
HxXi < kx + e;nin,
Huui < ku,

= Advantage: Simplifies tuning, constraints will be satisfied if possible
= Disadvantage: Requires solution of two optimization problems
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Recap: Soft constraints

e Soft constraints recover feasibility of the optimization when constraints
cannot be satisfied

e Allow for a variety of violation duration vs. size tradeoffs

e Good closed-loop properties

= Generally applied in practice

Note: standard methods for soft constrained MPC do not provide a stability
guarantee for open-loop unstable systems

= Recent developments towards soft constrained MPC with stability
guarantees!

IPreliminary work in M.N.Zeilinger, C.N. Jones and M. Morari, Robust stability properties
of soft constrained MPC, Conf. on Decision and Control, 2010
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Outline

3. Tracking
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Tracking problem: Introduction

Standard MPC problem regulates system state to the origin

s.t.

N—1

i=0
Xo = X

Xi+1 = AX; + Bu;
Cxi+Du; <b
R>0,Q >0

u*(x) == argmin  x},Qexy + Z x! Qx; + u] Ru

measurement
system model
constraints

performance weights

Common task: Tracking of non-zero output set points

= How can we modify the MPC problem to achieve tracking?
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Tracking problem:

Regulation to origin:

2F
15+
1t g
0.51 N
< oF N
-0.5p
1t

-15}

s

e Given output target y,, how do we obtain a corresponding state target x,?

Practical Model Predictive Control

Introduction

Non-zero target:

2
1.5t
n
0.5
$op
—0.5}
1t

-1.5r

s

xol
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Tracking problem: Introduction

Regulation to origin:

2r

157

1

0.5

< oF N
~05P

)

-15}

s

ol

Non-zero target:

P
1.5r :
1r ‘ : N
0.5p

op \\
=
-1.5r
3 0 5

X

e Given output target y,, how do we obtain a corresponding state target x,?

e How do we adapt MPC cost to control the system to the target state?

e How do we choose terminal set and when is MPC problem feasible with
respect to target?

Practical Model Predictive Control
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Tracking problem
Consider the linear system model

Xk+1 = Axk + Buy

Ve = Cxk
where x € R™, u € R™, y € R".

e Assumption: State can be measured.

e Constraints: x € X, u € U with constraint sets

X={x|Hx <k}, U={x]|Hu<k,}

Goal: Track given reference r such that yx — r as k = oo

Note: Using this framework we can track sequence of constant targets, i.e. a
piecewise constant reference. We will not cover time-varying references in this
lecture.
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Target state corresponding to output reference

e The reference is achieved by the target state x5 if ys = Cxs = r

e Target state should be a steady-state, such that there exists an input that
keeps system at target, i.e. xs = Axs + Bus

= Target condition:

Xs = Axs + Bus [/ —A B] |:X5] |:O]

= =

Cxs=r C 0 Us r
~——_————
(nx4ny ) x (nx4ny)
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Steady-state target problem

o In the presence of constraints: (xs, us) has to satisfy state and input
constraints.

o Compute steady-state (xs, us) corresponding to reference r:
min usTF\’SuS
I—A —B| |xs 0
s.t. =
C 0 Us r
HXXS < kx
Hyus < ky
e In general, we assume that the target problem is feasible
¢ If no solution exists: Compute reachable set point that is ‘closest’ to r:
min (Cxs — )" Qs(Cxs — 1)
s.t. xs = Axs + Bus
HXXS S kX
Hyus < ky
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Delta-Formulation for tracking

Idea: Treat set point tracking as regulation problem with a coordinate
transformation

« Define deviation variables that (in the linear case) satisfy the same model

equations:
AXi1 = Xk41 — Xs
AX = X — X
= = Axx + Bux — (Axs + Bus)
Au=u— us
= AAXxy + BAug

o Constraints for deviation variables:
Hox < ke = HAx < ke — Hyxs
H, <k,= H,Au<k,— H,us

-2 -1 0 1 2 3 -2 -1 0 1 2 3
Ax,
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MPC problem for tracking

« Obtain target steady-state corresponding to reference r. 2
o Initial state Ax = x — Xxs.

e Apply regulation problem to new system in Delta-Formulation:

N—1
min Y Ax” QAx + Au] RAu; + Ve(Axy)
i=0 u=Au-+ us

s.t. Axg = Ax Ax [ wprc T . R

Axip = AAx; + BAU; regulator P

HeAx; < ky — HiXs sz, Us

X
. _ target
HuAui < ku = Hyus selector [— r
Axy € Xr

e Find optimal sequence of Au*

e Input applied to the system is u§ = Aug + us

2If the target steady-state is uniquely defined by the reference, we can also include the
target condition as a constraint in the MPC problem.
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MPC problem for tracking

Convergence

Assume target is feasible with xs € X, us € U and choose terminal weight
V¢(x) and constraint X as in the regulation case satisfying:

o Xr CX, Kx e Uforall x e Xr

o Vi(xT) — Vr(x) < —I(x, Kx) for all x € Xr

If in addition the target reference xs, us is such that

o xs @ Xr CX, KAx + us € U for all Ax € X¢

then the closed-loop system converges to the target reference,
i.e. xx — Xs and therefore y, = Cxx — r for k -

Proof: Choose local control law Au = KAx
e Invariance under local control law is directly inherited from regulation case
o Constraint satisfaction is provided by extra conditions:
- X PXCX - xeXVAx=x—xs € Xr
- KAx+us e UVAxe Xr - uel
e From asymptotic stability of the regulation problem: Ax, — 0 for k — oo
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MPC for tracking: Terminal Set

For the following consideration, consider only state constraints.

Regulation case:

Set of feasible targets:

Practical Model Predictive Control

Tracking using a shifted terminal set:

x

o Blue: State constraints

e Green: Terminal set

= Set of feasible targets may be
significantly reduced
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MPC for tracking: Terminal Set

Enlarge set of feasible targets by scaling terminal set for regulation

o Scale terminal set by scaling factor
a, ie. xled = g X

e Invariance is maintained: If X¥ is
L0 LTRSS invariant, then also aXr

e Choose scaling factor a such that
state and input constraints are still

5 satisfied
-5 0 5

x

— Scaling is dependent on target

— All targets xs, us € X x U are feasible for constraints
Note: steady-state condition still limits the set of admissible targets

— For targets at the boundary of the constraints: xy = x5, which corresponds
to a zero terminal set in the regulation case
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Recap: MPC for tracking

e Set point tracking problem corresponds to regulation problem after a
coordinate transformation

e If the closed-loop system is stable, set point is achieved
e Stability can be guaranteed using the same tools as for regulation
e Difficulties:

— Terminal set is a function of the target
— Reference change can render the optimization problem infeasible

15

-5 0 5

— Recent approach for tracking resolves this issue 3

3[I\/IPC for tracking piecewise constant references for constrained linear systems, Limon
et al., Automatica 2010]
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Outline

4. Offset-free control
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Constant disturbances

Constant disturbance is acting on the system causing system trajectory to
deviate from nominal dynamics.

Objective: If system is stabilized in the presence of the disturbance then it
converges to set point with zero offset.

Recall:

e In classic unconstrained control introduction of an integrating mode to
remove offset

e Input constraints and actuator limitations require anti-windup techniques
Approach in constrained control:

e Model the disturbance

e Use the output measurements and model to estimate the state and the
disturbance

e Find control inputs that use the disturbance estimate to remove offset
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Augmented model
Incorporate disturbance model assuming integral disturbance dynamics

X1 = Axi + Buy + Bgdi
A1 = dx
Yie = Cxic + Cadi
with d € R".

Only restriction on choice of By, Cy: observability of the augmented model

The augmented system is observable if and only if (A, C) is observable and

[A—/ By

c Cd] has full column rank, i.e. rank = ny + ng

= Maximal dimension of the disturbance: ng < n,

e A—1 Bd Xs| 0 .
Intuition: At steady-state { c CJ [dj = L/J and given ys, ds must be

uniquely defined.
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Linear state estimation

Design state and disturbance estimator based on the augmented model:
Xv1|  |A Bal X B Ly . ~
|:ak+1:| = [O / :| |:ak:| + [O Ug + Ly (CXk+ Cydk yk)

where X, d are estimates of the state and disturbance.

Error dynamics:
[Xk+1 - >:</<+1] _ [A Bd} {Xk} n {B] u
dip1 — it 0 /] |dk 0| *

A B % B Ly N ~
_ |:O /d:| l:a’j _ [0:| Uy — |:Ld:| (CXk + Cydi — Cx — Cddk)

(o %]+l e @R

L .
= Choose [ = [LX] such that the error dynamics are stable and converge to
d

zero, i.e. the estimator is stable.
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Additional disturbances/noise in offset-free control

Consider the augmented model that is subject to noise

Xer1|  |A Ba| | Xk B
i Al | A R R
Ve = Cxx + Cyd + v

where w, v is white noise, with covariance matrices Q., R. respectively.
(Co-variances may be treated as design parameters or found from input-output

measurements)

= Use Kalman filter to estimate both the state and the integrating
disturbance*

= Optimal estimator gain L that minimizes the variance of the estimation
error

4ref
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Offset-free tracking
Goal: Track constant reference r, i.e. yx = Cxx — r for k = .
e New condition at steady-state:

Xs = Axs + Bug + Byds
Ys = CXS + Cdds =r
— The system steady state is modified to account for effect of
disturbance on state evolution

— Target is modified to account for effect of disturbance on tracked
variables

e Best forecast for steady-state disturbance is current estimate ds = d

e Adapt target condition accordingly to account for disturbance:

I—A —B][x] [ Bad
C 0 ||us|  |r—cCyd

Note: Same procedure for the regulation case with r =0
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Offset-free tracking

At each sampling time

1. Estimate state and disturbance %, d

2. Obtain (xs, us) from steady-state target problem using disturbance estimate

3. Solve MPC problem for tracking using disturbance estimate d:

min Z(x,- — %) T QX — xs) + (ui — us) " R(uj — us) + Vir(xn — Xs)

di=d

Xip1 = Ax; + Bu; + d
HXX/ < kx

HuUi S ku

XN — Xs € Xf

Practical Model Predictive Control

x>

MPC
regulator

plant

Xs, Us

estimator

target

selector

— r
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Offset-free tracking: Delta-Formulation

At each sampling time

1. Estimate state and disturbance &, d
2. Obtain (xs, us) from steady-state target problem using disturbance estimate
3. Initial state AX = X — xs
4. Solve MPC problem for tracking in Delta-Formulation:
N-1
min Z AxT QAX; + Au RAU; + Vi(Dxy)
i=0 u=Au+us
s.t. Axg = AX A%| MPC y
Axii1 = ADX; + BAU, reguator e
HXAXi < kX o HXXS o estimator
H,Aui < ky, — Hyus o
Asw € X o
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Offset-free control: Main result

 Consider the case ngy = ny, i.e. number of disturbance states equal to
number of measured outputs.

e Assume target steady-state problem is feasible and constraints are not
active at steady-state.

If closed-loop system converges to X, 85,)/5, ie. X — X di — do, Vi — Vs
as k — oo, then
Vi = Cxx — r for k — 00

Standard tracking Offset-free tracking
z - / h z T
2 of S 20 R Lo
3 3
0 10 20 30 40 3 10 20 30 40
time step time step
05 05
g2 0 H 01
-05; -05

10 20 30 40 o 10 20 30 40
time step time step
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Offset-free control: Example

Double Integrator: first set point: r = 0, second set point: r =3
1 output, 1 input, 1 modeled disturbance

Standard tracking: Offset-free tracking:
Model: Model:
1 1 1 1 1 1 1
+ + _
X _[O 1]x+[0.5]u X _[O 1}X+[O.5}u+[l}d
y=[1 0]x y=1[1 0]x
—05<u<05 —05<u<05
5<y<5 —-5<y<5
I —A —By
[ c 0 ] has full column rank

Target condition: Target condition:

e B G o g o)
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Recap: Offset-free control

Approach for offset-free constrained control:
e Model the disturbance e.g. using integrating disturbance dynamics

e Use the output measurements and model to estimate the state and the
disturbance (e.g. Kalman filter)

e Find control inputs that use the disturbance estimate to remove offset:
— Modify system steady state to account for effect of disturbance
— Modify target to account for effect of disturbance on tracked variables
— Solve MPC problem for regulation/tracking using the disturbance
estimate

Main result: If

e number of disturbance states is equal to number of outputs,

e the target steady-state problem is feasible and no constants are active at
steady-state

e the closed-loop system converges,

then the target is achieved without offset.
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Putting it all together

¢ In general state cannot be measured:
— Use Kalman filter to estimate the state

e Design tracking problem:
— Rewrite problem in Delta-Formulation
— Setup target steady-state problem
— Calculate terminal weight and scale terminal constraint to guarantee
convergence

e Extend to offset-free tracking:
— Augment model including a disturbance model
— Augment the estimator to estimate the state and the disturbance
— Adapt target steady-state problem using the disturbance estimate

Possibly: Remove terminal constraint while choosing long horizon

e Introduce soft constraints to ensure feasibility at all times:
— Introduce slack variables for constraint relaxation
— Choose penalty on slack variables (quadratic, linear)
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Exercise

Task: Implement stabilizing and invariant MPC for a simple 2-state system.

You will do this twice:

1. Manually: Compute appropriate matrices so that the problem can be solved
by a standard quadratic programming solver

2. Automatically: Use the tool YALMIP to build the problem data

You will use YALMIP throughout the rest of the course, and should generally
always use a tool of this sort to prevent manual translation errors.

Practical Model Predictive Control 6-62 Model Predictive Control ME-425



	MPC: Practical Issues
	Enlarging the Feasible Set
	MPC without Terminal Set
	Soft Constrained MPC

	Tracking
	Offset-free control

