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Elements of a Stabilizing and Invariant Controller
Finite-time optimal control

V ?
N(x0) = min

N−1∑

i=0

l(xi , ui ) + Vf (xN)

s.t. xi+1 = f (xi , ui )

(xi , ui ) ∈ X,U
xN ∈ Xf

(1)

Truncate after a finite horizon:

• Vf : Approximates the ‘tail’ of the cost

• Xf : Approximates the ‘tail’ of the constraints

Optimal control law: κN(x) := u?0
where u? :=

{
u?0, . . . , u

?
N−1

}
is the optimizer of (1)

What conditions do we need to place on Vf , Xf and l to ensure recursive
feasibility and stability?
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Stability of MPC - Main Result

If we can choose/find an Xf , κf , Vf and l such that:
1. The stage cost is a positive definite function, i.e. it is strictly positive and

only zero at the origin

2. The terminal set is invariant under the local control law κf (x):

x+ = Ax + Bκf (x) ∈ Xf for all x ∈ Xf

All state and input constraints are satisfied in Xf :

Xf ⊆ X, κf (x) ∈ U for all x ∈ Xf

3. Terminal cost is a continuous Lyapunov function in the terminal set Xf :

Vf (x+)− Vf (x) ≤ −l(x , κf (x)) for all x ∈ Xf

Thm: The closed-loop system under the MPC control law u?0(x) is stable and
the system x+ = Ax + Bu?0(x) is invariant in the feasible set XN .
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Stability of MPC - Outline of the Proof

• Assume feasibility of x and let [u?0, u?1, . . . , u?N−1]
be the optimal control sequence computed at x

• At x+, [u?1, u?2, . . . , κf (x?N)] is feasible:

xN is in Xf → κf (x?N) is feasible

and xN+1 = Ax?N + Bκf (x?N) in Xf

⇒ Terminal constraint provides recursive feasibility

fea
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Stability of MPC - Outline of the Proof

• Assume feasibility of x and let [u?0, u?1, . . . , u?N−1]
be the optimal control sequence computed at x

• At x+, [u?1, u?2, . . . , κf (x?N)] is feasible:

xN is in Xf → κf (x?N) is feasible

and xN+1 = Ax?N + Bκf (x?N) in Xf
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Stability of MPC - Outline of the Proof

J∗(x0) =

N−1∑

i=0

l(x∗i , u
∗
i ) + Vf (x∗N)

Feasible, sub-optimal sequence for x1 : [u?1, u?2, . . . , κf (x?N)]

J∗(x1) ≤
N∑

i=1

l(x∗i , u
∗
i ) + Vf (x̃N+1)

=

N−1∑

i=0

l(x∗i , u
∗
i ) + Vf (x∗N)− l(x∗0 , u

∗
0) + Vf (x̃N+1)− Vf (x∗N) + l(x∗N , κf (x∗N))

= J∗(x0)− l(x , u∗0) + Vf (x̃N+1)− Vf (x∗N) + l(x∗N , κf (x∗N))︸ ︷︷ ︸
Vf (x) is a Lyapunov function: ≤0

J?(x) is a Lyapunov function → (Lyapunov) Stability
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Choice of Terminal Sets and Functions
How do we choose Vf , Xf , κf to satisfy stability conditions?

Can be difficult in general, but one case is constructive:

f (x , u) = Ax + Bu X and U polytopes l(x , u) = xTQx + uTRu

Define the terminal controller as the optimal unconstrained LQR control law,
and the terminal weight as the optimal LQR cost:

κf (x) = Kx K = −(R + BTPB)−1BTPA

where P is the solution to the discrete-time algebraic Riccati equation:

P = Q + ATPA− ATPB(R + BTPB)−1BTPA

Choose the terminal weight to be the optimal LQR cost:

Vf (x) := xTPx =

∞∑

i=0

xi
TQxi + xi

TKTRKxi

Choose the terminal set Xf to be the maximum invariant set for the
closed-loop system x+ = (A + BK )x subject to Xf ⊂ X, KXf ⊂ U
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Choice of Terminal Sets and Functions

1. The stage cost is a positive definite function

l(x , u) = xTQx + uTRu > 0 for all x , u 6= 0

2. The terminal set is invariant under the local control law u = Kx .
Xf has been defined as the largest invariant set for the terminal control law.

3. Terminal cost is a continuous Lyapunov function in the terminal set Xf .

Vf (x1)− Vf (x0) = x1TPx1 − x0TPx0

=

∞∑

i=1

xi
T (Q + KTRK )xi −

∞∑

i=0

xi
T (Q + KTRK )xi

= −x0T (Q + KTRK )x0
= −l(x0,Kx0)

Practical Model Predictive Control 6–8 Model Predictive Control ME-425



Example: Unstable Linear System
System dynamics:

x+ =

[
1.2 1
0 1

]
x +

[
1
0.5

]
u

Constraints:

X := {x | −50 ≤ x1 ≤ 50, −10 ≤ x2 ≤ 10} = {x |Axx ≤ bx }
U := {u | ‖u‖∞ ≤ 1} = {u |Auu ≤ bu }

Stage cost:

l(x , u) := xT
[
1 0
0 1

]
x + uTu

Horizon: N = 10
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Example: Designing MPC Problem

1. Compute the optimal LQR controller and cost matrices: K , P
2. Compute the maximal invariant set Xf for the closed-loop linear system

x+ = (A + BK )x subject to the constraints

Xcl :=

{
x
∣∣∣∣
[

Ax

AuK

]
x ≤

[
bx

bu

]}
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−5

0

5

10
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Example: Closed-loop behaviour
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Example: Closed-loop behaviour
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Example: Lyapunov Decrease of Optimal Cost
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Example: Impact of Horizon

Maximum !
Control-Invariant !
Set


−50 0 50
−10

−5

0

5

10

N = 5


N = 10


N = 20


The horizon can have a strong impact on the region of attraction.
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Outline

1. MPC: Practical Issues

2. Enlarging the Feasible Set

• MPC without Terminal Set

• Soft Constrained MPC

3. Tracking

4. Offset-free control
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MPC: Practical Issues
Feasible Set

• Constraints restrict the set of states for which the optimization problem is
feasible.

• MPC controller is only defined in the feasible set, where a solution exists
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Example: Double Integrator

x+ =

[
1 1
0 1

]
x +

[
1
0.5

]
u

− 0.5 ≤ u ≤ 0.5

− 5 ≤ xi ≤ 5, i = 1, 2

→ Want the feasible set to be as large as possible
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MPC: Practical Issues
Tracking

• Classic MPC problem: Regulation to the origin

• Common task in practice: Tracking of non-zero output set points
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Example: Double Integrator

x+ =

[
1 1
0 1

]
x +

[
1
0.5

]
u

− 0.5 ≤ u ≤ 0.5

− 5 ≤ xi ≤ 5, i = 1, 2

→ Want to use MPC for tracking
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MPC: Practical Issues
Disturbance rejection

• Constant disturbance causes offset from the origin / the desired set point
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Example: Double Integrator

x+ =

[
1 1
0 1

]
x +

[
1
0.5

]
u + d

d = 0.2

− 0.5 ≤ u ≤ 0.5

− 5 ≤ xi ≤ 5, i = 1, 2

→ Want to remove offset such that system converges to desired set point.
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Outline

1. MPC: Practical Issues

2. Enlarging the Feasible Set

• MPC without Terminal Set
• Soft Constrained MPC

3. Tracking

4. Offset-free control
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Review: Stability of MPC

Assume that

1. The stage cost is a positive definite function, i.e. it is strictly positive and
only zero at the origin

2. The terminal set is invariant under the local control law κf (x):

x+ = Ax + Bκf (x) ∈ Xf for all x ∈ Xf

All state and input constraints are satisfied in Xf :

Xf ⊆ X, κf (x) ∈ U for all x ∈ Xf

3. Terminal cost is a continuous Lyapunov function in the terminal set Xf :

Vf (x+)− Vf (x) ≤ −l(x , κf (x)) for all x ∈ Xf

Thm: The closed-loop system under the MPC control law u?0(x) is stable and
the system x+ = Ax + Bu?0(x) is invariant in the feasible set XN .
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MPC without Terminal Set
Motivation

• Terminal constraint reduces feasible set
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Blue line: Feasible set with
terminal constraint

Red line: Feasible set
without terminal constraint

Dashed line: Terminal set

• Potentially adds large number of extra constraints

• Adds state constraints to problems with only input constraints

Goal: MPC without terminal constraint with guaranteed stability

Note: Feasible set without terminal constraint is not invariant.
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MPC without Terminal Set
We can remove terminal constraint while maintaining stability if

• initial state lies in sufficiently small subset of feasible set

• N is sufficiently large

such that terminal state satisfies terminal constraint without enforcing it in
the optimization.
⇒ Solution of the finite horizon MPC problem corresponds to the infinite
horizon solution
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MPC without Terminal Set: Discussion
Advantage: Controller defined in a larger feasible set

Disadvantage: Characterization of region of attraction or specification of
required horizon length extremely difficult

Remarks:

• Terminal constraint provides a sufficient condition for stability:
Region of attraction without terminal constraint may be larger than for
MPC with terminal constraint

• In practice: Enlarge horizon and check stability by sampling

• With larger horizon length N, region of attraction approaches maximum
control invariant set
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Soft constrained MPC: Concept

Motivation:

• State constraints may lead to infeasibility
(also without terminal constraint)

• Controller must provide some input in every
circumstance

−5 0 5
−5

0

5

x
1

x 2

• Input constraints often represent actuator limitations
→ generally have to be considered and satisfied

• State constraints often represent performance or comfort constraints
→ could be temporarily violated if necessary

• Soft constraints are common practice in industry
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Objectives

Goals:

• Minimize the duration of the violation
• Minimize the size of the violation

These can be conflicting goals, i.e. reduction in size of violation can only be
achieved at cost of large increase in duration of violation

→ Multi-objective problem

0 5 10 15 20 25 30

0

1

2

y

0 5 10 15 20 25 30
−0.4
−0.2

0
0.2
0.4
0.6

u

time step

Red: Minimum time of
violation

Blue: Minimum size of
violation
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Multi-objective Problem

For given system and horizon can plot pareto optimal size/duration curve for
different initial conditions:

Figure 3. Soft constraint solution.
Ss1, 10, 50, and 100. Solid lines: closed-loop; dotted line:
output upper constraint.

constraints are inconsistent and the control problem is infea-
sible. This multiobjective framework motivates the two new
approaches: an optimal minimal-time approach and a new
soft-constraint approach. We also discuss the use of exact soft
constraints, which are penalty functions that enforce the hard

Figure 4. Soft constraint approach.
Ss1,000. Solid lines: closed-loop; dotted line: output upper
constraint.

constraints when the problem is feasible. Finally, concluding
remarks are made in the third section. Simulations are used
throughout the article to illustrate the main points.

New Results
Multiobjecti©e nature of infeasibility problems

The minimal-time and soft-constraint approaches dis-
cussed previously are sharply contrasting solutions to the
feasibility question: the first minimizes the duration of con-
straint violations, regardless of their size; the second mini-
mizes the size of the violations, regardless of their duration.
Each of these approaches may be appropriate for different
processes. In general, however, both the duration and size of
constraint violations are important, which leads to our inter-
pretation of the feasibility question as a multiobjective prob-
lem.

When all the state constraints cannot be satisfied, it is nor-
mally desired to minimize the predicted violations in some
way. Different measures of violation can be used; here, we
consider the ‘‘size’’ of constraint violations as one measure
and ‘‘duration’’ of the constraint violations as another. We
note that alternative measures could be equally appropriate,
but these two allow us to demonstrate the multiobjective na-
ture of reducing state-constraint violations, which is our main
purpose.

In many plants, the simultaneous minimization of the size
and duration of the state-constraint violations is not a con-
flicting objective. The optimal way to handle infeasibility is
then simply to minimize both size and duration; regulator
performance may then be optimized, subject to the ‘‘opti-
mally’’ relaxed state constraints.

Unfortunately, not all infeasibilities are as easily resolved.
In some cases, such as nonminimum phase plants, a reduc-
tion in the size of violation can only be obtained at the cost
of a large increase in duration of the violation, and vice versa.
The optimization of constraint violations then becomes a
multiobjective problem. For a given system and horizon N,
the Pareto optimal-sizer-duration curves can be plotted for
different initial conditions, as in Figure 5. The user must then

Figure 5. Pareto optimal constraint violation sizerrrrr
duration curves for varying initial state x .

August 1999 Vol. 45, No. 8 AIChE Journal1652

Best operation points lie on pareto optimal
curve:

• points below cannot be attained

• points above are inferior

→ Operation at pareto optimality is in
general difficult and only approximately
achieved

Best operation point minimum time or minimum violation?

Depends on application, e.g.:

• if product must be discarded during constraint violation, goal is minimum
time of violation

• if large constraint violations can lead to process shutdown or exceptions
goal is minimum amount of violation
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Soft constrained MPC problem setup

min
u

N−1∑

i=0

xT
i Qxi + uT

i Rui + ρ(εi ) + xT
N PxN + ρ(εN)

s.t. xi+1 = Axi + Bui

Hxxi ≤ kx + εi ,

Huui ≤ ku,

εi ≥ 0

• Relax state constraints by introducing so called
slack variables εi ∈ Rp

• Penalize amount of constraint violation in the cost
by means of penalty ρ(εi )

How to choose penalty?

• Quadratic penalty: ρ(εi ) = εTi Sεi
• Quadratic and linear norm penalty:
ρ(εi ) = εTi Sεi + s‖εi‖1/∞

hTx x � kx

�1

�2

�3 = 0

x1

x2

x3

−5 −4 −3 −2 −1 0 1 2 3 4 5
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x

Blue: xT x + 10εT ε
Red: xT x + 10‖ε‖1
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Example

Consider the third-order non-minimum phase system

x+ =



2 −1.45 0.35
1 0 0
0 1 1


 x +



1
0
0


 u

y =
[
−1 0 2

]

• Constraint: −1 ≤ y ≤ 1

• Controller parameters:
Q = CTC ,R = 1 and N = 20.

Initial condition
x(0) =

[
0.8 0.8 0.8

]T
:

0 10 20 30 40 50
0

0.5

1

y

0 10 20 30 40 50
−0.5

0

0.5

u

time step
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Soft constraints with quadratic penalty

Properties of the quadratic penalty:

• Well-posed quadratic program (positive definite Hessian)

• Increase in S leads to ‘hardening’ of the soft constraints

Example:

0 5 10 15 20 25 30

0

1

2

y

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

u

time step

Initial condition:
x(0) =

[
1.5 1.5 1.5

]T

Blue: S = 1
Red: S = 10
Green: S = 50
Violet: S = 100

→ Increase in S leads to reduced size of violation but longer duration
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Soft constraints with quadratic and linear penalty

Properties of the linear penalty:

• Allows for exact penalties: If weight s is chosen large enough, constraints
are satisfied if possible

• Increasing s results in increasing peak violations and decreasing duration
• Large linear penalties make tuning difficult and cause numerical problems

Example:

0 10 20 30 40 50

0

0.5

1

y

0 10 20 30 40 50

−0.2

0

0.2

u

time step

Initial condition:
x(0) =

[
.95 .95 .95

]T
Penalty: 1-norm, S= 20

Blue: s = 0.1
Red: s = 10
Green: s = 25
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Soft constraints with quadratic and linear penalty

Properties of the linear penalty:

• Allows for exact penalties: If weight s is chosen large enough, constraints
are satisfied if possible

• Increasing s results in increasing peak violations and decreasing duration
• Large linear penalties make tuning difficult and cause numerical problems

Example:
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−0.4
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0
0.2
0.4
0.6

u

time step

Initial condition:
x(0) =

[
1.5 1.5 1.5

]T
Penalty: 1-norm, S= 20

Blue: s = 0.1
Red: s = 10
Green: s = 25
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Simplification: Separation of objectives

1. Minimize violation over the horizon:

εmin = argminu,εε
T
i Sεi + sT εi

s.t. xi+1 = Axi + Bui

Hxxi ≤ Kx + εi ,

Huui ≤ Ku,

εi ≥ 0

2. Optimize for controller performance:

min
u

N−1∑

i=0

xT
i Qxi + uT

i Rui + xT
N PxN

s.t. xi+1 = Axi + Bui

Hxxi ≤ kx + εmin
i ,

Huui ≤ ku,

⇒ Advantage: Simplifies tuning, constraints will be satisfied if possible
⇒ Disadvantage: Requires solution of two optimization problems
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Recap: Soft constraints

• Soft constraints recover feasibility of the optimization when constraints
cannot be satisfied

• Allow for a variety of violation duration vs. size tradeoffs

• Good closed-loop properties

⇒ Generally applied in practice

Note: standard methods for soft constrained MPC do not provide a stability
guarantee for open-loop unstable systems

⇒ Recent developments towards soft constrained MPC with stability
guarantees1

1Preliminary work in M.N.Zeilinger, C.N. Jones and M. Morari, Robust stability properties
of soft constrained MPC, Conf. on Decision and Control, 2010
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Outline

1. MPC: Practical Issues

2. Enlarging the Feasible Set

• MPC without Terminal Set

• Soft Constrained MPC

3. Tracking

4. Offset-free control
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Tracking problem: Introduction

Standard MPC problem regulates system state to the origin

u�(x) := argmin xTNQf xN +

N�1�

i=0

xTi Qxi + uTi Rui

���� x0 = x ���������
�

xi+1 = Axi + Bui ������������

Cxi +Dui � b ��
����

��

R ⇥ 0, Q ⇥ 0 ��������
�����
�	��

Common task: Tracking of non-zero output set points

⇒ How can we modify the MPC problem to achieve tracking?
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Tracking problem: Introduction
Regulation to origin:
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• Given output target yr , how do we obtain a corresponding state target xr?

• How do we adapt MPC cost to control the system to the target state?

• How do we choose terminal set and when is MPC problem feasible with
respect to target?
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Tracking problem: Introduction
Regulation to origin:

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

Non-zero target:

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

• Given output target yr , how do we obtain a corresponding state target xr?

• How do we adapt MPC cost to control the system to the target state?

• How do we choose terminal set and when is MPC problem feasible with
respect to target?
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Tracking problem

Consider the linear system model

xk+1 = Axk + Buk

yk = Cxk

where x ∈ Rnx , u ∈ Rnu , y ∈ Rny .

• Assumption: State can be measured.

• Constraints: x ∈ X, u ∈ U with constraint sets

X = {x | Hxx ≤ kx} ,U = {x | Huu ≤ ku}

Goal: Track given reference r such that yk → r as k →∞

Note: Using this framework we can track sequence of constant targets, i.e. a
piecewise constant reference. We will not cover time-varying references in this
lecture.
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Target state corresponding to output reference

• The reference is achieved by the target state xs if ys = Cxs = r

• Target state should be a steady-state, such that there exists an input that
keeps system at target, i.e. xs = Axs + Bus

⇒ Target condition:

xs = Axs + Bus

Cxs = r
⇒

[
I − A −B

C 0

]

︸ ︷︷ ︸
(nx+ny )×(nx+nu)

[
xs

us

]
=

[
0
r

]
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Steady-state target problem

• In the presence of constraints: (xs , us) has to satisfy state and input
constraints.

• Compute steady-state (xs , us) corresponding to reference r :

min uT
s Rsus

s.t.
[
I − A −B

C 0

] [
xs

us

]
=

[
0
r

]

Hxxs ≤ kx

Huus ≤ ku

• In general, we assume that the target problem is feasible
• If no solution exists: Compute reachable set point that is ‘closest’ to r :

min (Cxs − r)TQs(Cxs − r)

s.t. xs = Axs + Bus

Hxxs ≤ kx

Huus ≤ ku
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Delta-Formulation for tracking

Idea: Treat set point tracking as regulation problem with a coordinate
transformation

• Define deviation variables that (in the linear case) satisfy the same model
equations:

∆x = x − xs

∆u = u − us
⇒

∆xk+1 = xk+1 − xs

= Axk + Buk − (Axs + Bus)

= A∆xk + B∆uk

• Constraints for deviation variables:

Hxx ≤ kx ⇒ Hx∆x ≤ kx − Hxxs

Hu ≤ ku ⇒ Hu∆u ≤ ku − Huus
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MPC problem for tracking

• Obtain target steady-state corresponding to reference r . 2

• Initial state ∆x = x − xs .

• Apply regulation problem to new system in Delta-Formulation:

min
N−1∑

i=0

∆xT
i Q∆xi + ∆uT

i R∆ui + Vf (∆xN)

s.t. ∆x0 = ∆x

∆xi+1 = A∆xi + B∆ui

Hx∆xi ≤ kx − Hxxs

Hu∆ui ≤ ku − Huus

∆xN ∈ Xf

plant


target

selector


MPC 
regulator


r

y

x

u = �u + us

xs , us

�x

• Find optimal sequence of ∆u∗

• Input applied to the system is u∗0 = ∆u∗0 + us

2If the target steady-state is uniquely defined by the reference, we can also include the
target condition as a constraint in the MPC problem.
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MPC problem for tracking
Convergence

Assume target is feasible with xs ∈ X, us ∈ U and choose terminal weight
Vf (x) and constraint Xf as in the regulation case satisfying:

• Xf ⊆ X, Kx ∈ U for all x ∈ Xf

• Vf (x+)− Vf (x) ≤ −l(x ,Kx) for all x ∈ Xf

If in addition the target reference xs , us is such that

• xs ⊕Xf ⊆ X, K∆x + us ∈ U for all ∆x ∈ Xf

then the closed-loop system converges to the target reference,
i.e. xk → xs and therefore yk = Cxk → r for k →∞

Proof: Choose local control law ∆u = K∆x
• Invariance under local control law is directly inherited from regulation case
• Constraint satisfaction is provided by extra conditions:

xs ⊕Xf ⊆ X → x ∈ X ∀∆x = x − xs ∈ Xf

K∆x + us ∈ U ∀∆x ∈ Xf → u ∈ U
• From asymptotic stability of the regulation problem: ∆xk → 0 for k →∞
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MPC for tracking: Terminal Set

For the following consideration, consider only state constraints.

Regulation case:

−5 0 5
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x
1

x 2

Set of feasible targets:

−5 0 5
−5

0

5

x
1

x 2

Tracking using a shifted terminal set:
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5

x
1

x 2

• Blue: State constraints

• Green: Terminal set

⇒ Set of feasible targets may be
significantly reduced
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MPC for tracking: Terminal Set

Enlarge set of feasible targets by scaling terminal set for regulation

−5 0 5
−5

0

5

x
1

x 2

• Scale terminal set by scaling factor
α, i.e. X scaled

f = αXf

• Invariance is maintained: If Xf is
invariant, then also αXf

• Choose scaling factor α such that
state and input constraints are still
satisfied

→ Scaling is dependent on target

→ All targets xs , us ∈ X× U are feasible for constraints
Note: steady-state condition still limits the set of admissible targets

→ For targets at the boundary of the constraints: xN = xs , which corresponds
to a zero terminal set in the regulation case
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Recap: MPC for tracking

• Set point tracking problem corresponds to regulation problem after a
coordinate transformation

• If the closed-loop system is stable, set point is achieved

• Stability can be guaranteed using the same tools as for regulation

• Difficulties:
Terminal set is a function of the target
Reference change can render the optimization problem infeasible
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→ Recent approach for tracking resolves this issue 3

3[MPC for tracking piecewise constant references for constrained linear systems, Limon
et al., Automatica 2010]
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Outline

1. MPC: Practical Issues

2. Enlarging the Feasible Set

• MPC without Terminal Set

• Soft Constrained MPC

3. Tracking

4. Offset-free control
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Constant disturbances
Constant disturbance is acting on the system causing system trajectory to
deviate from nominal dynamics.

Objective: If system is stabilized in the presence of the disturbance then it
converges to set point with zero offset.

Recall:

• In classic unconstrained control introduction of an integrating mode to
remove offset

• Input constraints and actuator limitations require anti-windup techniques

Approach in constrained control:

• Model the disturbance

• Use the output measurements and model to estimate the state and the
disturbance

• Find control inputs that use the disturbance estimate to remove offset
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Augmented model

Incorporate disturbance model assuming integral disturbance dynamics

xk+1 = Axk + Buk + Bddk

dk+1 = dk

yk = Cxk + Cddk

with d ∈ Rnd .

Only restriction on choice of Bd , Cd : observability of the augmented model

The augmented system is observable if and only if (A,C ) is observable and
[
A− I Bd

C Cd

]
has full column rank, i.e. rank = nx + nd

⇒ Maximal dimension of the disturbance: nd ≤ ny

Intuition: At steady-state
[
A− I Bd

C Cd

] [
xs

ds

]
=

[
0
ys

]
and given ys , ds must be

uniquely defined.
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Linear state estimation
Design state and disturbance estimator based on the augmented model:

[
x̂k+1

d̂k+1

]
=

[
A Bd

0 I

] [
x̂k

d̂k

]
+

[
B
0

]
uk +

[
Lx

Ld

]
(Cx̂k + Cd d̂k − yk)

where x̂ , d̂ are estimates of the state and disturbance.

Error dynamics:
[
xk+1 − x̂k+1

dk+1 − d̂k+1

]
=

[
A Bd

0 I

] [
xk

dk

]
+

[
B
0

]
uk

−
[
A Bd

0 I

] [
x̂k

d̂k

]
−
[
B
0

]
uk −

[
Lx

Ld

]
(Cx̂k + Cd d̂k − Cxk − Cddk)

=

([
A Bd

0 I

]
+

[
Lx

Ld

] [
C Cd

]) [xk − x̂k

dk − d̂k

]

⇒ Choose L =

[
Lx

Ld

]
such that the error dynamics are stable and converge to

zero, i.e. the estimator is stable.
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Additional disturbances/noise in offset-free control

Consider the augmented model that is subject to noise
[
xk+1

dk+1

]
=

[
A Bd

0 I

] [
xk

dk

]
+

[
B
0

]
uk + w

yk = Cxk + Cddk + v

where w , v is white noise, with covariance matrices Qe ,Re respectively.
(Co-variances may be treated as design parameters or found from input-output
measurements)

⇒ Use Kalman filter to estimate both the state and the integrating
disturbance4

⇒ Optimal estimator gain L that minimizes the variance of the estimation
error

4ref
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Offset-free tracking

Goal: Track constant reference r , i.e. yk = Cxk → r for k →∞.

• New condition at steady-state:

xs = Axs + Bus + Bdds

ys = Cxs + Cdds = r

The system steady state is modified to account for effect of
disturbance on state evolution
Target is modified to account for effect of disturbance on tracked
variables

• Best forecast for steady-state disturbance is current estimate ds = d̂

• Adapt target condition accordingly to account for disturbance:
[
I − A −B

C 0

] [
xs

us

]
=

[
Bd d̂

r − Cd d̂

]

Note: Same procedure for the regulation case with r = 0
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Offset-free tracking

At each sampling time

1. Estimate state and disturbance x̂ , d̂

2. Obtain (xs , us) from steady-state target problem using disturbance estimate

3. Solve MPC problem for tracking using disturbance estimate d̂ :

min
N−1∑

i=0

(xi − xs)TQ(xi − xs) + (ui − us)TR(ui − us) + Vf (xN − xs)

s.t. x0 = x̂

di = d̂

xi+1 = Axi + Bui + di

Hxxi ≤ kx

Huui ≤ ku

xN − xs ∈ Xf

x̂ , d̂

plant


target

selector


MPC 
regulator


r

y

xs , us

estimator


u

x̂
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Offset-free tracking: Delta-Formulation

At each sampling time

1. Estimate state and disturbance x̂ , d̂

2. Obtain (xs , us) from steady-state target problem using disturbance estimate

3. Initial state ∆x̂ = x̂ − xs

4. Solve MPC problem for tracking in Delta-Formulation:

min
N−1∑

i=0

∆xT
i Q∆xi + ∆uT

i R∆ui + Vf (∆xN)

s.t. ∆x0 = ∆x̂

∆xi+1 = A∆xi + B∆ui

Hx∆xi ≤ kx − Hxxs

Hu∆ui ≤ ku − Huus

∆xN ∈ Xf

x̂ , d̂

plant


target

selector


MPC 
regulator


r

y

u = �u + us

xs , us

estimator


�x̂
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Offset-free control: Main result
• Consider the case nd = ny , i.e. number of disturbance states equal to
number of measured outputs.

• Assume target steady-state problem is feasible and constraints are not
active at steady-state.

If closed-loop system converges to x̂s , d̂s , ys , i.e. x̂k → x̂s , d̂k → d̂s , yk → ys

as k →∞, then
yk = Cxk → r for k →∞

Standard tracking
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Offset-free tracking
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Offset-free control: Example

Double Integrator: first set point: r = 0, second set point: r = 3
1 output, 1 input, 1 modeled disturbance

Standard tracking:
Model:

x+ =

[
1 1
0 1

]
x +

[
1
0.5

]
u

y =
[
1 0

]
x

− 0.5 ≤ u ≤ 0.5

− 5 ≤ y ≤ 5

Offset-free tracking:
Model:

x+ =

[
1 1
0 1

]
x +

[
1
0.5

]
u +

[
1
1

]
d

y =
[
1 0

]
x

− 0.5 ≤ u ≤ 0.5

− 5 ≤ y ≤ 5

[
I − A −Bd

C 0

]
has full column rank

Target condition:
[
I − A −B

C 0

] [
xs

us

]
=

[
0
r

]
Target condition:
[
I − A −B

C 0

] [
xs

us

]
=

[
−Bd d̂

r − Cd d̂

]
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Recap: Offset-free control

Approach for offset-free constrained control:

• Model the disturbance e.g. using integrating disturbance dynamics

• Use the output measurements and model to estimate the state and the
disturbance (e.g. Kalman filter)

• Find control inputs that use the disturbance estimate to remove offset:
Modify system steady state to account for effect of disturbance
Modify target to account for effect of disturbance on tracked variables
Solve MPC problem for regulation/tracking using the disturbance
estimate

Main result: If

• number of disturbance states is equal to number of outputs,
• the target steady-state problem is feasible and no constants are active at
steady-state

• the closed-loop system converges,

then the target is achieved without offset.
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Putting it all together

• In general state cannot be measured:

Use Kalman filter to estimate the state

• Design tracking problem:
Rewrite problem in Delta-Formulation
Setup target steady-state problem
Calculate terminal weight and scale terminal constraint to guarantee
convergence

• Extend to offset-free tracking:
Augment model including a disturbance model
Augment the estimator to estimate the state and the disturbance
Adapt target steady-state problem using the disturbance estimate

• Possibly: Remove terminal constraint while choosing long horizon

• Introduce soft constraints to ensure feasibility at all times:
Introduce slack variables for constraint relaxation
Choose penalty on slack variables (quadratic, linear)
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Exercise
Task: Implement stabilizing and invariant MPC for a simple 2-state system.

You will do this twice:

1. Manually: Compute appropriate matrices so that the problem can be solved
by a standard quadratic programming solver

2. Automatically: Use the tool YALMIP to build the problem data

You will use YALMIP throughout the rest of the course, and should generally
always use a tool of this sort to prevent manual translation errors.
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